Data Envelopment Analysis with Nonhomogeneous DMUs
نویسندگان
چکیده
Data envelopment analysis (DEA), as originally proposed, is a methodology for evaluating the relative efficiencies of a set of homogeneous decision-making units (DMUs) in the sense that each uses the same input and output measures (in varying amounts from one DMU to another). In some situations, however, the assumption of homogeneity among DMUs may not apply. As an example, consider the case where the DMUs are plants in the same industry that may not all produce the same products. Evaluating efficiencies in the absence of homogeneity gives rise to the issue of how to fairly compare a DMU to other units, some of which may not be exactly in the same “business.” A related problem, and one that has been examined extensively in the literature, is the missing data problem; a DMU produces a certain output, but its value is not known. One approach taken to address this problem is to “create” a value for the missing output (e.g., substituting zero, or by taking the average of known values), and use it to fill in the gaps. In the present setting, however, the issue isn’t that the data for the output is missing for certain DMUs, but rather that the output isn’t produced. We argue herein that if a DMU has chosen not to produce a certain output, or for any reason cannot produce that output, and therefore does not put the resources in place to do so, then it would be inappropriate to artificially assign that DMU a zero value or some “average” value for the nonexistent factor. Specifically, the desire is to fairly evaluate a DMU for what it does, rather than penalize or credit it for what it doesn’t do. In the current paper we present DEA-based models for evaluating the relative efficiencies of a set of DMUs where the requirement of homogeneity is relaxed. We then use these models to examine the efficiencies of a set of manufacturing plants.
منابع مشابه
Cost Efficiency Measures In Data Envelopment Analysis With Nonhomogeneous DMUs
In the conventional data envelopment analysis (DEA), it is assumed that all decision making units (DMUs) using the same input and output measures, means that DMUs are homogeneous. In some settings, however, this usual assumption of DEA might be violated. A related problem is the problem of textit{missing} textit{data} where a DMU produces a certain output or consumes a certain input but the val...
متن کاملEfficient DMUs improvement based on input expenses reduction using data envelopment analysis
Network nowadays, the main purpose in the models designed by Data Envelopment Analysis (DEA), is to improve the outputs. In this method which is expressed by Khodabakhshi, with an output oriented BCC model, the output increases when the input increases. In this article we will discuss the efficient Decision Making Units (DMUs) in the input oriented BCC model to reduce the input expenses signifi...
متن کاملContext-Dependent Data Envelopment Analysis-Measuring Attractiveness and Progress with Interval Data
Data envelopment analysis (DEA) is a method for recognizing the efficient frontier of decision making units (DMUs).This paper presents a Context-dependent DEA which uses the interval inputs and outputs. Context-dependent approach with interval inputs and outputs can consider a set of DMUs against the special context. Each context shows an efficient frontier including DMUs in particular l...
متن کاملImproving envelopment in data envelopment analysis by means of unobserved DMUs: an application of banking industry
In data envelopment analysis, the relative efficiency of a decision making unit (DMU) is defined as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a the true efficiency of a DMU because some of its inputs/outputs may not contribute reasonably in computing t...
متن کاملPreservation of efficiency and inefficiency classification in data envelopment analysis ∗
Sufficient conditions for simultaneous efficiency preservation of all efficient Decision Making Units (DMUs) and for inefficiency preservation of all inefficient DMUs in the Additive model of Data Envelopment Analysis (DEA) under the simultaneous non-negative perturbations of all data of all DMUs are obtained. An illustrative example is provided.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 61 شماره
صفحات -
تاریخ انتشار 2013